RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2014, том 96, выпуск 5, страницы 855–863 (Mi mzm11677)

Эта публикация цитируется в 13 статьях

Статьи, опубликованные в английской версии журнала

The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations

V. I. Bogachevab, A. I. Kirillovc, S. V. Shaposhnikovba

a Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia
b St.-Tikhon's University, Moscow, Russia
c Russian Foundation for Basic Research, Moscow, Russia

Аннотация: We obtain upper bounds for the total variation distance and the quadratic Kantorovich distance between stationary distributions of two diffusion processes with different drifts. More generally, our estimate holds for solutions to stationary Kolmogorov equations in the class of probability measures. This estimate is applied to nonlinear stationary Fokker–Planck–Kolmogorov equations for probability measures.

Ключевые слова: Kantorovich distance, Fokker–Planck–Kolmogorov equation, invariant measure of diffusion.

MSC: Primary 35R60; Secondary 35B35, 35Q84

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2014, 96:5, 855–863

Реферативные базы данных:


© МИАН, 2025