RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2020, том 107, выпуск 4, страницы 618–627 (Mi mzm11754)

Статьи, опубликованные в английской версии журнала

Some Estimates for Maximal Bochner-Riesz Means on Musielak-Orlicz Hardy Spaces

Bo Liab, Minfeng Liaoa, Baode Lia

a College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046 China
b Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

Аннотация: Let $\varphi\colon\mathbb{R}^n\times[0,\infty) \to [0,\infty)$ satisfy that $\varphi(x,\,\cdot\,)$, for any given $x\in\mathbb{R}^n$, is an Orlicz function and $\varphi(\,\cdot\,,t)$ is a Muckenhoupt $A_\infty$ weight uniformly in $t\in(0,\infty)$. The Musielak–Orlicz Hardy space $H^\varphi(\mathbb{R}^n)$ is defined to be the space of all tempered distributions whose grand maximal functions belong to the Musielak–Orlicz space $L^\varphi(\mathbb{R}^n)$. In this paper, the authors establish the boundedness of maximal Bochner–Riesz means $T^\delta_\ast$ from $H^\varphi(\mathbb{R}^n)$ to $WL^\varphi(\mathbb{R}^n)$ or $L^\varphi(\mathbb{R}^n)$. These results are also new even when $\varphi(x,t):=\Phi(t)$ for all $(x,t)\in\mathbb{R}^n\times[0,\infty)$, where $\Phi$ is an Orlicz function.

Ключевые слова: Bochner–Riesz means, Musielak–Orlicz function, Hardy space.

Поступило: 21.07.2017
Исправленный вариант: 19.06.2019

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2020, 107:4, 618–627

Реферативные базы данных:


© МИАН, 2024