RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2018, том 104, выпуск 2, страницы 255–264 (Mi mzm11757)

Эта публикация цитируется в 3 статьях

Неравенство Бернштейна для производных Вейля тригонометрических полиномов в пространстве $L_0$

А. О. Леонтьеваab

a Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
b Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург

Аннотация: Получена логарифмическая асимптотика поведения по $n$ точной константы в неравенстве Бернштейна для производной Вейля положительного нецелого порядка тригонометрических полиномов порядка $n$ в пространстве $L_0$. Оказалось, что порядок поведения этой константы по $n$ для положительных нецелых порядков производных имеет показательный рост, в отличие от степенного роста в хорошо исследованном случае классических производных целого положительного порядка.
Библиография: 24 названия.

Ключевые слова: тригонометрический полином, производная Вейля, неравенство Бернштейна, пространство $L_0$.

УДК: 517

Поступило: 26.07.2017
Исправленный вариант: 07.10.2017

DOI: 10.4213/mzm11757


 Англоязычная версия: Mathematical Notes, 2018, 104:2, 263–270

Реферативные базы данных:


© МИАН, 2024