RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2020, том 107, выпуск 2, страницы 264–273 (Mi mzm12270)

Статьи, опубликованные в английской версии журнала

On Graphs of Bounded Semilattices

P. Malakooti Rada, P. Nasehpourb

a Department of Mathematics, Qazvin Branch, Islamic Azad University, Qazvin, 34199-15195 Iran
b Department of Engineering Science, Golpayegan University of Technology, Golpayegan, 87717-65651 Iran

Аннотация: In this paper, we introduce the graph $G(S)$ of a bounded semilattice $S$, which is a generalization of the intersection graph of the substructures of an algebraic structure. We prove some general theorems about these graphs; as an example, we show that if $S$ is a product of three or more chains, then $G(S)$ is Eulerian if and only if either the length of every chain is even or all the chains are of length one. We also show that if $G(S)$ contains a cycle, then $\hbox{girth}(G(S)) = 3$. Finally, we show that if $(S,+,\cdot,0,1)$ is a dually atomic bounded distributive lattice whose set of dual atoms is nonempty, and the graph $G(S)$ of $S$ has no isolated vertex, then $G(S)$ is connected with $\hbox{diam}(G(S))\leq 4$.

Ключевые слова: intersection graphs, bounded semilattices, Eulerian graph, planar graph.

Поступило: 19.10.2018
Исправленный вариант: 19.10.2018

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2020, 107:2, 264–273

Реферативные базы данных:


© МИАН, 2024