RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 109, выпуск 5, страницы 735–747 (Mi mzm12433)

Статьи, опубликованные в английской версии журнала

Inequalities for Eigenvalues of the Sub-Laplacian on Strictly Pseudoconvex CR Manifolds

He-Jun Sun

College of Science, Nanjing University of Science and Technology Nanjing, 210094 China

Аннотация: The sub-Laplacian plays a key role in CR geometry. In this paper, we investigate eigenvalues of the sub-Laplacian on bounded domains of strictly pseudoconvex CR manifolds, strictly pseudoconvex CR manifolds submersed in Riemannian manifolds. We establish some Levitin–Parnovski-type inequalities and Cheng–Huang–Wei-type inequalities for their eigenvalues. As their applications, we derive some results for the standard CR sphere $\mathbb{S}^{2n+1}$ in $\mathbb{C}^{n+1}$, the Heisenberg group $\mathbb{H}^n$, a strictly pseudoconvex CR manifold submersed in a minimal submanifold in $\mathbb{R}^m$, domains of the standard sphere $\mathbb{S}^{2n}$ and the projective space $\mathbb{F}P^m$.

Ключевые слова: eigenvalue, inequality, sub-Laplacian, CR manifold.

Поступило: 01.05.2019
Исправленный вариант: 27.08.2019

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 109:5, 735–747

Реферативные базы данных:


© МИАН, 2024