RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 109, выпуск 2, страницы 163–169 (Mi mzm12726)

Эта публикация цитируется в 1 статье

Сходимость почти всюду кратных тригонометрических рядов Фурье функций из классов Соболева

Р. Р. Ашуров

Институт математики им. В. И. Романовского АН РУз

Аннотация: В работе изучается сходимость почти всюду сферических частичных сумм кратных рядов Фурье функций из классов Соболева. Доказано, что сходимость почти всюду будет иметь место при тех же условиях на порядок гладкости разлагаемой функции, что и при кратных интегралов Фурье, что установлено в известной работе Карбери и Сория (1988). Наши рассуждения во многом опираются на методику, развитую в работе Кенига и Томаса (1980).
Библиография: 7 названий.

Ключевые слова: кратные ряды Фурье, сферические частичные суммы, сходимость почти всюду, пространства Соболева.

УДК: 517

PACS: 42B99

Поступило: 16.03.2020

DOI: 10.4213/mzm12726


 Англоязычная версия: Mathematical Notes, 2021, 109:2, 157–162

Реферативные базы данных:


© МИАН, 2024