RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 109, выпуск 3, страницы 358–378 (Mi mzm12844)

Эта публикация цитируется в 8 статьях

Статьи, опубликованные в английской версии журнала

Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions

N. P. Bondarenkoab

a Department of Applied Mathematics and Physics, Samara National Research University, Samara, 443086 Russia
b Department of Mechanics and Mathematics, Saratov State University, Saratov, 410012 Russia

Аннотация: The matrix Sturm–Liouville operator on a finite interval with boundary conditions in the general self-adjoint form and with singular potential of class $W_2^{-1}$ is studied. This operator generalizes Sturm–Liouville operators on geometrical graphs. We investigate structural and asymptotical properties of the spectral data (eigenvalues and weight matrices) of this operator. Furthermore, we prove the uniqueness of recovering the operator from its spectral data, by using the method of spectral mappings.

Ключевые слова: matrix Sturm–Liouville operator, singular potential, Sturm–Liouville operators on graphs, eigenvalue asymptotics, Riesz-basicity of eigenfunctions, inverse problem, uniqueness theorem.

Поступило: 18.07.2020

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 109:3, 358–378

Реферативные базы данных:


© МИАН, 2024