RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 109, выпуск 3, страницы 386–397 (Mi mzm12944)

Эта публикация цитируется в 5 статьях

Статьи, опубликованные в английской версии журнала

An Invariant Subbundle of the KZ Connection mod $p$ and Reducibility of $\widehat{\mathfrak{sl}_2}$ Verma Modules mod $p$

A. N. Varchenkoabc

a Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3250 USA
b Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Moscow GSP-1, 119991 Russia
c Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991 Russia

Аннотация: We consider the KZ differential equations over $\mathbb C$ in the case, when its multidimensional hypergeometric solutions are one-dimensional integrals. We also consider the same differential equations over a finite field $\mathbb{F}_p$. We study the space of polynomial solutions of these differential equations over $\mathbb{F}_p$, constructed in a previous work by V. Schechtman and the author. The module of these polynomial solutions defines an invariant subbundle of the associated KZ connection modulo $p$. We describe the algebraic equations for that subbundle and argue that the equations correspond to highest weight vectors of the associated $\widehat{\mathfrak{sl}_2}$ Verma modules over the field $\mathbb{F}_p$.

Ключевые слова: KZ equations, reduction to characteristic $p$, $\mathbb{F}_p$-hypergeometric solutions.

Поступило: 28.10.2020

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 109:3, 386–397

Реферативные базы данных:


© МИАН, 2024