RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2022, том 111, выпуск 2, страницы 289–296 (Mi mzm12966)

Эта публикация цитируется в 2 статьях

Статьи, опубликованные в английской версии журнала

Borsuk's Partition Problem in $(\mathbb{R}^{n},\ell_{p})$

Jun Wanga, Yuqin Zhangb

a Center for Applied Mathematics, Tianjin University, Tianjin, 300072 China
b School of Mathematics, Tianjin University, Tianjin, 300072 China

Аннотация: For a bounded set $X$ with diameter $d_{C}(X)$ in a finite-dimensional normed space with an origin-symmetric convex body $C$ as the unit ball, the Borsuk number of $X$, denoted by $a_{C}(X)$, is the smallest integer $k$ such that $X$ can be represented as a union of $k$ sets, the diameter of each of which is strictly less than $d_{C}(X)$. In this paper, we solve the problem of finding the upper bound for the Borsuk number for any bounded set $X$ in the special Minkowski spaces $(\mathbb{R}^{n},\ell_{p})$. We have $a_{C}(X)\leq 2^{n}$ in $(\mathbb{R}^{n},\ell_{p})$, for all $p$ satisfying $1/(\log_{n}(n+1)-1)< p \leq + \infty$ and $2\leq n$, $n\in\mathbb{N}^{+}$. If $n=2$, we have $a_{C}(X)\leq 4$ for all values of $p$; this is proved by a new approach.

Ключевые слова: Borsuk's partition problem, Minkowski space, covering, $K^{n}_{p}$, $\ell_{p}$ norm.

Поступило: 25.11.2020
Исправленный вариант: 23.04.2021

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2022, 111:2, 289–296

Реферативные базы данных:


© МИАН, 2024