RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 109, выпуск 2, страницы 262–269 (Mi mzm13022)

Статьи, опубликованные в английской версии журнала

Stability Property of Functional Equations inModular Spaces: A Fixed-Point Approach

P. Sahaa, Pratap Mondalb, B. S. Choudhurya

a Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103 India
b Bijoy Krishna Girls' College, Howrah, Howrah, 711101 India

Аннотация: We investigate the Hyers–Ulam–Rassias stability property of a quadratic functional equation. The analysis is done in the context of modular spaces. The type of stability considered here is very general in character which has been considered in various domains of mathematics. The speciality of the functional equation considered here is that it has a geometrical background behind its introduction. We approach the problem by applying a fixed point method for which a version of the contraction mapping principle in modular spaces is utilized. Also the results in this paper are established without using some familiar conditions on modular spaces.

Ключевые слова: Hyers–Ulam–Rassias stability, quadratic functional equation, modular spaces, fixed point.

Поступило: 01.05.2020

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 109:2, 262–269

Реферативные базы данных:


© МИАН, 2024