Аннотация:
В статье продолжаются исследования автора,начатые в работах [1]–[3].
Устанавливаются обратные теоремы приближения в пространствах
$S^{(p,q)}(\sigma^{m-1})$, $m\ge 3$, в том числе теоремы типа
Бернштейна–Стечкина–Тимана. Дифференциально-разностные
характеристики элементов указанных пространств задаются операторами,
определяющимися соответствующими преобразованиями их рядов Фурье–Лапласа.
Библиография: 28 названий.