RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 110, выпуск 5, страницы 678–686 (Mi mzm13056)

Статьи, опубликованные в английской версии журнала

On the Representation of Integers as Sums of a Class of Triangular Numbers

Jing-Jun Yu

School of Mathematical Sciences, East China Normal University, Shanghai, 200241 People's Republic of China

Аннотация: In this paper, we discuss the problem of the number of representations of positive integers as sums of triangular numbers. The method we use is similar to Rankin's way in studying the sum of squares representation of positive integers. We decompose the theta function $q^{k}\psi ^{4k}(q)\psi ^{2k}({q^2})$ into an Eisenstein series and a cusp form to give an asymptotic formula for $t_{4k,2k}(n)$. Moreover, we obtain concrete formulas for $k = 2,4$, respectively, by using a linear combination of the divisor function and the coefficient of an $\eta$-product.

Ключевые слова: Eisenstein series, triangular numbers, modular forms, $\eta$-product, divisor function.

Поступило: 26.02.2021
Исправленный вариант: 21.05.2021

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 110:5, 679–686

Реферативные базы данных:


© МИАН, 2024