RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 109, выпуск 3, страницы 335–346 (Mi mzm13057)

Статьи, опубликованные в английской версии журнала

Some Finiteness Results for Local Cohomology Modules with Respect to a Pair of Ideals

Batoul Naal, Kazem Khashyarmanesh

Department of Pure Mathematics, Faculty of Mathematical Sciences and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, 1159-91775 Iran

Аннотация: Suppose that $R$ is a commutative Noetherian ring with identity, $I$, $J$ are ideals of $R$, and let $M$ be a finitely generated $R$-module. Let $H^i_{I,J}(-)$ be the $i$th local cohomology functor with respect to $(I, J)$. In this paper, we show that the $R$-module
$$\mathrm{Hom}_R(R/I,H^1_{I,J}(M)/JH^1_{I,J}(M))$$
is always finitely generated. Moreover, we provide sufficient conditions such that the modules
$$ \mathrm{Hom}_R(R/I,H^i_{I,J}(M)/JH^i_{I,J}(M)) \qquad \mathrm{or} \qquad \mathrm{Tor}^R_j(R/I,H^i_{I,J}(M)/JH^i_{I,J}(M)) $$
is finitely generated.

Ключевые слова: local cohomology with respect to a pair of ideals, associated prime ideals, filter regular element.

Поступило: 03.04.2020
Исправленный вариант: 16.09.2020

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 109:3, 335–346

Реферативные базы данных:


© МИАН, 2024