RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 109, выпуск 5, страницы 759–776 (Mi mzm13125)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

Solutions of Super-Linear Elliptic Equations and Their Morse Indices

Foued Mtiri

Mathematics Department, Faculty of Sciences and Arts, King Khalid University, Muhayil Asir, 62529 Saudi Arabia

Аннотация: We investigate the degenerate bi-harmonic equation
$$ \Delta_{m}^2 u=f(x,u)\quad \text{in} \ \ \Omega, \qquad u = \Delta u = 0\quad \text{on}\ \ \partial\Omega, $$
with $m\ge 2$, and also the degenerate tri-harmonic equation:
$$ -\Delta_{m}^3 u=f(x,u)\quad \text{in} \ \ \Omega,\qquad u = \frac{\partial u}{\partial\nu}= \frac{\partial^{2} u}{\partial\nu^{2}} = 0\quad \text{on}\ \ \partial\Omega, $$
where $\Omega\subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $N>4$ or $N>6$ respectively, and $f \in\mathrm{C}^{1}(\Omega\times \mathbb{R})$ satisfies suitable m-superlinear and subcritical growth conditions. Our main purpose is to establish $L^{p}$ and $L^{\infty}$ explicit bounds for weak solutions via the Morse index. Our results extend previous explicit estimates obtained in [1]–[4].

Ключевые слова: $m$-polyharmonic equation, Morse index, elliptic estimates.

Поступило: 15.12.2019

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 109:5, 759–776

Реферативные базы данных:


© МИАН, 2024