Статьи, опубликованные в английской версии журнала
On Stable Solutions to a Weighted Degenerate
Elliptic Equation with Advection Terms
Dao Trong Quyeta,
Dao Manh Thangb a Academy of Finance, Hanoi, Vietnam
b Hung Vuong High School for Gifted Students, Phu Tho, Vietnam
Аннотация:
In this paper, we study the elliptic equations
$$
-G_\alpha u+c({\rm x})\cdot\nabla_\alpha u=h({\rm x} )e^{u}, \qquad {\rm x} =
(x,y) \in \mathbb R^{N_{1}}\times \mathbb R^{N_{2}}=\mathbb R^{N},
$$
where
$G_{\alpha} =\Delta_{x}+ ( 1+\alpha )^{2}\lvert x\rvert^{2\alpha}\Delta_{y}$,
$\alpha > 0$, is the Grushin operator. Here, the advection term
$c({\rm x})$
is a smooth, divergence free vector field satisfying certain decay condition and
$h({\rm x}) $ is a continuous function such that
$h({\rm x} )\geq C|{\rm x}|^l$,
$l\geq 0$, where
$|{\rm x}|$ is the Grushin norm of
${\rm x}$.
We will prove that the equation has no stable solutions provided that
$$
N_{\alpha}< 10+ 4 l,
$$
where
$N_\alpha:=N_1+(1+\alpha)N_2$ is the homogeneous dimension of
$\mathbb R^N$ associated to the Grushin operator.
Ключевые слова:
Liouville type theorems, Advection terms, Stable solutions, elliptic equations.
Поступило: 31.08.2021
Язык публикации: английский