RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2021, том 110, выпуск 5, страницы 738–753 (Mi mzm13341)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

Hugoniot–Maslov Chain for Shock Waves in Buckley–Leverett Equations

P. Rodríguez-Bermúdeza, F. V. Sousab, D. C. Lobãoa, G. B. Alvareza, B. Valiño-Alonsoc

a Department of Exact Sciences, Federal Fluminense University, Volta Redonda, Rio de Janeiro, 27255125 Brazil
b Federal Fluminense University, Volta Redonda, Rio de Janeiro, 27255125 Brazil
c Differential Equations Department, Havana University, Havana, 10400 Cuba

Аннотация: In this paper, we apply the asymptotic method developed by V. P. Maslov [1] to obtain the approximated shock-type solutions of the generalized Riemann problem (GRP) to the Buckley–Leverett equation. We calculate the the Hugoniot–Maslov chain (an infinite ODE system) whose fulfillment is a necessary condition that must be satisfied by the coefficients of the asymptotic expansion of the shock-type solution. Numerical simulations based on the truncated Hugoniot–Maslov chain show the efficiency of this method which captures the shock wave unlike some classical finite differences schemes. Finally, we compare the results obtained in this paper with the results obtained via the same asymptotic method, but based in a previous polynomial approximation of the Buckley–Leverett flux as explained in [2]. It was observed that the application of the asymptotic method preceded by a polynomial approximation of the flux function, does not work well for long time simulation values.

Ключевые слова: asymptotic methods, shock waves, the Buckley–Leverett equation, generalized Riemann problem, the Hugoniot–Maslov chain.

Поступило: 03.03.2020
Исправленный вариант: 19.02.2021

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2021, 110:5, 738–753

Реферативные базы данных:


© МИАН, 2024