RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2022, том 111, выпуск 3, страницы 388–397 (Mi mzm13474)

Эта публикация цитируется в 3 статьях

Статьи, опубликованные в английской версии журнала

On the Smirnov-Type Inequality for Polynomials

E. G. Kompaneets, V. V. Starkov

Institute of Mathematics and IT, Petrozavodsk State University, Petrozavodsk, 185910 Russia

Аннотация: The presented article is devoted to differential inequalities for polynomials. The theme goes back to the problem posed by the famous chemist D. I. Mendeleev. This problem was repeatedly modificated and extended by many mathematicians. In these studies, it was usually assumed that all the zeros of a majorizing polynomial belong to the closed unit disk. We remove this requirement, replacing it with a weaker one and obtain a generalization of the Smirnov type inequality for polynomials having one zero in the exterior of the unit disk. This allow us to obtain a refinement of the Bernstein inequality, proving it not only outside the unit disk, but also in a part of the this disk.

Ключевые слова: polynomial, Bernstein inequality, Smirnov inequality for polynomials, differential operator.

Поступило: 05.09.2021
Исправленный вариант: 29.09.2021

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2022, 111:3, 388–397

Реферативные базы данных:


© МИАН, 2024