RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 4, страницы 522–535 (Mi mzm13588)

Статьи, опубликованные в английской версии журнала

On the Norms and Eigenvalues of $r$-Circulant Matrices with $k$-Mersenne and $k$-Mersenne–Lucas Numbers

M. Kumaria, K. Prasada, E. Ozkanb, J. Tantic

a Department of Mathematics, Central University of Jharkhand, Ranchi
b Erzincan Binali Yıldırım University
c Babasaheb Bhimrao Ambedkar University

Аннотация: In this work, we study the $r$-circulant matrix $ C_r = Circ_r(c_0, c_1,c_2,...,c_{n-1})$ such that the entries of $C_r $ are $c_i=M_{k,a+ib}$ or $c_i=R_{k,a+ib}$, where $M_{k,a+ib}$ and $R_{k,a+ib}$ are $k$-Mersenne and $k$-Mersenne–Lucas numbers, respectively. We obtain the eigenvalues and determinants for the matrices and some important identities for the $k$-Mersenne and $k$-Mersenne–Lucas numbers. Furthermore, we find norms and bounds estimation for the spectral norm for these $r$-circulant matrices.

Ключевые слова: $k$-Mersenne number, $k$-Mersenne–Lucas number, $r$-circulant matrix, eigenvalue, Euclidean norm, spectral norm.

MSC: 11B37; 15B36

Поступило: 19.05.2022
Исправленный вариант: 25.01.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:4, 522–535

Реферативные базы данных:


© МИАН, 2024