Аннотация:
В работе изучается новый класс локально мажорируемых ортогонально
аддитивных операторов в решеточно-нормированных пространствах.
В первой части статьи устанавливаются достаточные условия существования
локальной точной мажоранты локально мажорируемого оператора и приводятся
формулы для ее вычисления. Во второй части показано, что осколочная
компактность мажорируемого ортогонально аддитивного оператора, действующего
из разложимого решеточно-нормированного пространства в банахово пространство
со смешанной нормой, влечет осколочную компактность его точной мажоранты.
Библиография: 23 названия.