RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 5, страницы 1045–1051 (Mi mzm13665)

Статьи, опубликованные в английской версии журнала

Banach–Mazur Distance from $\ell_p^3$ to $\ell_\infty^3$

L. Zhang, L. Meng, S. Wu

School of Mathematics, North University of China, Taiyuan

Аннотация: The maximum of the Banach–Mazur distance $d_{BM}^M(X,\ell_\infty^n)$, where $X$ ranges over the set of all $n$-dimensional real Banach spaces, is difficult to compute. In fact, it is even not easy to find the maximum of $d_{BM}^M(\ell_p^n,\ell_\infty^n)$ over all $p\in [1,\infty]$. We prove that $d_{BM}^M(\ell_p^3,\ell_\infty^3)\leq 9/5$ for all $p\in[1,\infty]$. As an application, the following result related to Borsuk's partition problem in Banach spaces is obtained: any subset $A$ of $\ell_p^3$ having diameter $1$ is a union of $8$ subsets of $A$ whose diameters are at most $0.9$.

Ключевые слова: Banach–Mazur distance, $\ell_p^{n}$ space, Borsuk's problem.

MSC: 46B20; 46B04

Поступило: 14.07.2022
Исправленный вариант: 29.12.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:5, 1045–1051

Реферативные базы данных:


© МИАН, 2024