RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2022, том 112, выпуск 2, страницы 223–238 (Mi mzm13673)

Статьи, опубликованные в английской версии журнала

How Can We Identify the Sparsity Structure Pattern of High-Dimensional Data: an Elementary Statistical Analysis to Interpretable Machine Learning

K. L. Luab

a Jiangsu Automation Research Institute, Shanghai, 201210 China
b School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai, 201620 China

Аннотация: Machine learning is a key tool to identify low-dimensional structure patterns in high-dimensional data in the current “Big Data” era. Taking linear regression and supervised binary classification for simplicity as study cases, we present a whole statistical analysis framework and procedure from formulation to computation, which aims to provide an elementary introduction to interpretable machine learning methods or algorithms, e.g., Lasso and its variants, SVM, etc. Meanwhile, the optimality, risk bounds, and complexity of these sparsity structure pattern recognition algorithms have been precisely characterized through proved theorems or corollaries. And the limitations of these algorithms and why we need deep learning are realized.

Ключевые слова: high-dimensional data, sparsity structure, pattern recognition, statistical analysis, interpretable machine learning.

Поступило: 22.01.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2022, 112:2, 223–238

Реферативные базы данных:


© МИАН, 2024