Аннотация:
Работа посвящена исследованию некоторых спектральных свойств оператора Штурма–Лиувилля на полуоси $\mathbb{R}_+$ с растущим на бесконечности комплексным потенциалом. Вместо известных условий В. Б. Лидского об ограниченности снизу вещественной части или полуограниченности мнимой части потенциала предполагается, что область значений потенциала не пересекается с некоторым малым углом, содержащим отрицательную вещественную полуось. При некоторых дополнительных условиях на потенциал типа гладкости и регулярности роста на бесконечности показано, что числовая область оператора заполняет всю комплексную плоскость, спектр дискретен, существует некоторый сектор, свободный от спектра, и любой луч из этого сектора является лучом наилучшего убывания резольвенты. Основываясь на этих фактах, установлена базисность системы корневых векторов для суммирования методом Абеля–Лидского.
Библиография: 26 названий.
Ключевые слова:оператор Шрёдингера, дискретность спектра, несекториальные операторы, базисность для суммирования методом Абеля–Лидского.