RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2022, том 112, выпуск 6, страницы 831–844 (Mi mzm13824)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

The Method of Harmonic Mapping of Regions with a Notch

S. I. Bezrodnykha, V. I. Vlasovba

a Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow, 119333 Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscowб 119991 Russia

Аннотация: It is well known that common numerical methods encounter serious computational difficulties when constructing harmonic mappings of regions with notches and generating computational grids in such regions on the basis of these mappings. We propose an efficient computational technique for constructing a harmonic mapping of domains with a rectangular notch based on the analytical–numerical multipole method. Our research demonstrates high computational efficiency of the proposed method; the use of only $40$ approximative functions (multipoles) provides an error of less than $10^{-7}$ in the $C (\overline{g})$ norm. The result is obtained with the help of a posteriori estimation. We find a condition ensuring that the grid line issuing from the vertex of an angle of magnitude $\pi \beta$, $\beta >1$, is not tangent to the angle sides at this vertex, which prevents the emergence of an adverse grid self-overlapping effect.

Ключевые слова: harmonic mapping, narrow notch domain, conformal mapping, analytical-numerical multipole method.

Поступило: 25.08.2022
Исправленный вариант: 20.09.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2022, 112:6, 831–844

Реферативные базы данных:


© МИАН, 2024