RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2022, том 112, выпуск 6, страницы 845–860 (Mi mzm13825)

Статьи, опубликованные в английской версии журнала

Results on the Existence and Multiplicity of Solutions for a Class of Sublinear Degenerate Schrödinger Equations in $\mathbb{R}^N$

Bui Kim My

Faculty of Primary Education, Hanoi Pedagogical University 2, Vinh Phuc, 283460 Vietnam

Аннотация: In this paper, we study the existence and multiplicity of nontrivial solutions of the semilinear degenerate Schrödinger equation
$$ -\mathcal{L}u + V(x)u = f(x,u),\qquad x\in \mathbb{R}^N,\quad N\ge 3, $$
where $V$ is a potential function defined on $\mathbb{R}^N$ and the nonlinearity $f$ is of sublinear growth and satisfies some appropriate conditions to be specified later. Here $\mathcal{L}$ is an $X$-elliptic operator with respect to a family $X = \{X_1, \ldots, X_m\}$ of locally Lipschitz continuous vector fields. We apply the Ekeland variational principle and a version of the fountain theorem in the proofs of our main existence results. Our main results extend and improve some recent ones in the literature.

Ключевые слова: Sublinear Schrödinger equation, $X$-elliptic operator, fountain theorem, variational method.

Поступило: 03.06.2022
Исправленный вариант: 19.07.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2022, 112:6, 845–860

Реферативные базы данных:


© МИАН, 2024