RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2022, том 112, выпуск 6, страницы 1003–1016 (Mi mzm13832)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

Dynamical and qKZ Equations Modulo $p^s$: an Example

A. Varchenkoab

a Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-3250 USA
b Faculty of Mathematics and Mechanics, Lomonosov Moscow State University, Moscow, 119991 Russia

Аннотация: We consider an example of the joint system of dynamical differential equations and qKZ difference equations with parameters corresponding to equations for elliptic integrals. We solve this system of equations modulo any power $p^n$ of a prime integer $p$. We show that the $p$-adic limit of these solutions as $n\to\infty$ determines a sequence of line bundles, each of which is invariant with respect to the corresponding dynamical connection, and that the sequence of line bundles is invariant with respect to the corresponding qKZ difference connection.

Ключевые слова: Dynamical and qKZ equations, $p^s$-hypergeometric solution, master polynomial, Dwork congruence.

Поступило: 10.05.2022
Исправленный вариант: 31.07.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2022, 112:6, 1003–1016

Реферативные базы данных:


© МИАН, 2024