RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 113, выпуск 2, страницы 172–181 (Mi mzm13905)

Эта публикация цитируется в 3 статьях

Статьи, опубликованные в английской версии журнала

Infinitely Many Solutions for a Class of Kirchhoff Problems Involving the $p(x)$-Laplacian Operator

A. Ghanmia, L. Mbarkia, K. Saoudibc

a Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092 Tunisia
b College of Sciences at Dammam, University of Imam Abdulrahman Bin Faisal, Dammam, 31441, Saudi Arabia
c Basic and Applied Scientific Research Center, University of Imam Abdulrahman Bin Faisal, Dammam, 31441, Saudi Arabia

Аннотация: This article is devoted to studying a class of generalized $p(x)$-Laplacian Kirchhoff equations in the following form:
\begin{align*} \begin{cases} -M\biggl(\int_{\Omega}\frac{1}{p(x)}|\nabla u|^{p(x)}\biggr)\operatorname{div} \biggl(|\nabla u|^{p(x)-2}\nabla u\biggr)=\lambda |u|^{r(x)-2}u +f(x,u) &\text{in }\Omega, \\ u=0 &\text{on }\partial\Omega, \end{cases} \end{align*}
where $\Omega$ is a bounded domain of $\mathbb{R}^N (N\geq 2)$ with smooth boundary $\partial\Omega$$\lambda>0$, and $p$ and $r$, are two continuous functions in $\overline{\Omega}$. Using variational methods combined with some properties of the generalized Sobolev spaces, under appropriate assumptions on $f$ and $M$, we obtain a number of results on the existence of solutions. In addition, we show the existence of infinitely many solutions in the case when $f$ satisfies the evenness condition.

Ключевые слова: $p(x)$-Laplacian operator, variational methods, $p(x)$-Kirchhoff problem.

Поступило: 14.03.2022

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 113:2, 172–181

Реферативные базы данных:


© МИАН, 2024