RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 5, страницы 776–778 (Mi mzm13919)

Статьи, опубликованные в английской версии журнала

On Prime Primitive Roots of $2^{k}p+1$

S. Filipovski

University of Primorska, Koper, Slovenia

Аннотация: A prime $p$ is a Sophie Germain prime if $2p+1$ is prime as well. An integer $a$ that is coprime to a positive integer $n>1$ is a primitive root of $n$ if the order of $a$ modulo $n$ is $\phi(n).$ Ramesh and Makeshwari proved that, if $p$ is a prime primitive root of $2p+1$, then $p$ is a Sophie Germain prime. Since there exist primes $p$ that are primitive roots of $2p+1$, in this note we consider the following general problem: For what primes $p$ and positive integers $k>1$, is $p$ a primitive root of $2^{k}p+1$? We prove that it is possible only if $(p,k)\in \{(2,2), (3,3), (3,4), (5,4)\}.$

Ключевые слова: prime, Sophie Germain prime, primitive root.

MSC: 11A07, 11A41, 11A51

Поступило: 11.02.2023
Исправленный вариант: 02.05.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:5, 776–778

Реферативные базы данных:


© МИАН, 2025