RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 115, выпуск 6, страницы 908–916 (Mi mzm13991)

Статьи, опубликованные в английской версии журнала

A Study on Strongly Lacunary Ward Continuity in 2-Normed Spaces

S. Ersan

Maltepe University, Istanbul, Turkey

Аннотация: In this paper, we study the ideal strong lacunary ward compactness of a subset of a 2-normed space $X$ and the ideal strongly lacunary ward continuity of a function $f$ on $X$. Here a subset $E$ of $X$ is said to be ideal strong lacunary ward compact if any sequence in $E$ has an ideal strong lacunary quasi-Cauchy subsequence. Additionally, a function on $X$ is said to be ideal strong lacunary ward continuous if it preserves ideal strong lacunary quasi-Cauchy sequences; an ideal is defined to be a hereditary and additive family of subsets of $\mathbb{N}$. We find that a subset $E$ of $X$ with a countable Hamel basis is totally bounded if and only if it is ideal strong lacunary ward compact.

Ключевые слова: continuity, 2-normed spaces, compactness, ideal.

MSC: 40A30, 40A05, 42A65, 54C30, 26A15

Поступило: 14.04.2023
Исправленный вариант: 11.03.2024

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 115:6, 908–916

Реферативные базы данных:


© МИАН, 2024