RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2023, том 114, выпуск 5, страницы 818–824 (Mi mzm14013)

Статьи, опубликованные в английской версии журнала

Sums of Weakly Sequentially Recurrent Operators

N. Karim, M. Amouch

Department of Mathematics, Faculty of Science, Chouaib Doukkali University, El Jadida, Morocco

Аннотация: An operator $T$ in a Banach space $X$ is said to be recurrent if the set
\begin{equation*} \{x\in X:\ x\in \overline{O(T,Tx)}\} \end{equation*}
is dense in $X$. The operator $T$ is said to be weakly sequentially recurrent if the set
\begin{equation*} \{x\in X:\ x\in \overline{O(T,Tx)}^w\} \end{equation*}
is weakly dense in $X$. Costakis et al. [Complex Anal. Oper. Theory 8 (8), 1601–1643] ask if $T\oplus T$ should be recurrent whenever so is $T$. This question has been answered negatively by Grivaux et al. [arXiv: 2212.03652]. In this paper, we prove the existence of an operator $T$ weakly sequentially recurrent such that $T\oplus T$ is not.

Ключевые слова: recurrent operator, weakly recurrent operator, direct sum of weakly recurrent operators.

MSC: 47A16,37B20

Поступило: 27.04.2023
Исправленный вариант: 15.10.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2023, 114:5, 818–824

Реферативные базы данных:


© МИАН, 2025