О порождении групп $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ и $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ тремя инволюциями, две их которых перестановочны. II
Аннотация:
Мы завершаем решение задачи о существовании порождающих троек инволюций, две из которых перестановочны, для специальной $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ и проективной специальной $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$ линейных групп над кольцом целых гауссовых чисел. Ответ был неизвестен только для $\mathrm{SL}_5$, $\mathrm{PSL}_6$ и $\mathrm{SL}_{10}$. Мы указываем явно такие порождающие тройки инволюций в этих трех случаях, причем в доказательстве существенно используем компьютерные вычисления. Учитывая известные результаты по рассматриваемой задаче, в качестве следствия получаем два следующих утверждения. Группа $\mathrm{SL}_n(\mathbb{Z}+i\mathbb{Z})$ (соответственно $\mathrm{PSL}_n(\mathbb{Z}+i\mathbb{Z})$) тогда и только тогда порождается тремя инволюциями, две из которых перестановочны, когда $n\geqslant 5$ и $n\neq 6$ (соответственно когда $n\geqslant 5$).
Библиография: 8 названий.
Ключевые слова:специальная и проективная специальная линейные группы, кольцо целых гауссовых чисел, порождающие тройки инволюций.