RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 116, выпуск 2, страницы 238–251 (Mi mzm14227)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

On Some Questions around Berest's Conjecture

J. Guoab, A. Zheglovb

a School of Mathematical Sciences, Peking University and Sino-Russian Mathematics Center, Beijing, China
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Аннотация: Let $K$ be a field of characteristic zero, and let $A_1=K[x][\partial ]$ be the first Weyl algebra. In the present paper, we prove the following two results.
Assume that there exists a nonzero polynomial $f(X,Y)\in K[X,Y]$ such that (i) $f$ has a nontrivial solution $(P,Q)\in A_{1}^{2}$ with $[P,Q]=0$; (ii) the set of solutions of $f$ in $A_{1}^{2}$ splits into finitely many $\operatorname{Aut}(A_1)$-orbits under the natural actuon of the group $\operatorname{Aut}(A_1)$. Then the Dixmier conjecture holds; i.e., every $\varphi\in \operatorname{End}(A_{1})\setminus\{0\}$ is an automorphism.
Assume that $\varphi\in \operatorname{End}(A_{1})$ is an endomorphism of monomial type. (In particular, it is not an automorphism; see Theorem 4.1.) Then $\varphi$ has no nontrivial fixed points; i.e. there exists no $P\in A_1\setminus K$ such that $\varphi (P)=P$.

Ключевые слова: Weyl algebra, Dixmier conjecture, Berest conjecture.

MSC: 14R15, 12E05

Поступило: 10.01.2024
Исправленный вариант: 10.07.2024

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 116:2, 238–251

Реферативные базы данных:


© МИАН, 2024