RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 115, выпуск 4, страницы 574–587 (Mi mzm14333)

Статьи, опубликованные в английской версии журнала

Hereditary Saturated Subsets and the Invariant Basis Number Property of the Leavitt Path Algebra of Cartesian Products

Min Lia, Huanhuan Liba, Yuquan Wena

a School of Mathematical Sciences, Anhui University, Hefei, China
b Center for Pure Mathematics, Anhui University, Hefei, China

Аннотация: In this note, first, we describe the (minimal) hereditary saturated subsets of finite acyclic graphs and finite graphs whose cycles have no exits. Then we show that the Cartesian product $C_m\times L_n$ of an $m$-cycle $C_m$ by an $n$-line $L_n$ has nontrivial hereditary saturated subsets even though the graphs $C_m$ and $L_n$ themselves have only trivial hereditary saturated subsets. Tomforde (Theorem 5.7 in “Uniqueness theorems and ideal structure for Leavitt path algebras,” J. Algebra 318 (2007), 270–299) proved that there exists a one-to-one correspondence between the set of graded ideals of the Leavitt path algebra $L(E)$ of a graph $E$ and the set of hereditary saturated subsets of $E^0$. This shows that the algebraic structure of the Leavitt path algebra $L(C_m\times L_n)$ of the Cartesian product is plentiful. We also prove that the invariant basis number property of $L(C_m\times L_n)$ can be derived from that of $L(C_m)$. More generally, we also show that the invariant basis number property of $L(E\times L_n)$ can be derived from that of $L(E)$ if $E$ is a finite graph without sinks.

Ключевые слова: hereditary saturated subset, Cartesian product, Leavitt path algebra, invariant basis number property.

Поступило: 13.11.2023
Исправленный вариант: 13.11.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 115:4, 574–587

Реферативные базы данных:


© МИАН, 2024