RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2024, том 115, выпуск 5, страницы 772–778 (Mi mzm14349)

Эта публикация цитируется в 1 статье

Статьи, опубликованные в английской версии журнала

On Hyperbolic Equations with Arbitrarily Directed Translations of Potentials

A. B. Muravnik

Peoples Friendship University of Russia

Аннотация: We study a hyperbolic equation with an arbitrary number of potentials that are acted upon by the operators of translation in arbitrary directions. Differential–difference equations arise in various applications that are not covered by the classical theory of differential equations. In addition, they are of considerable interest from a theoretical point of view, since the nonlocal nature of such equations gives rise to various effects that do not arise in the classical case. We find a condition on the vector of coefficients for nonlocal terms in the equation and on the vectors of potential translations that ensures the global solvability of the equation under consideration. By imposing the specified condition on the equation and using the classical Gelfand–Shilov scheme, we explicitly construct a three-parameter family of smooth global solutions to the equation under study.

Ключевые слова: differential–difference operator, hyperbolic equation, nonlocal potential, smooth solution.

Поступило: 12.08.2023
Исправленный вариант: 26.09.2023

Язык публикации: английский


 Англоязычная версия: Mathematical Notes, 2024, 115:5, 772–778

Реферативные базы данных:


© МИАН, 2024