RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2005, том 77, выпуск 4, страницы 566–583 (Mi mzm2518)

Эта публикация цитируется в 4 статьях

Многогранники Клейна для трех экстремальных кубических форм

В. И. Парусников

Институт прикладной математики им. М. В. Келдыша РАН

Аннотация: Давенпортом и Свиннертоном-Дайером были найдены первые 19 экстремальных тернарных кубических форм $g_i$, имеющих тот же смысл, что и известные формы Маркова в бинарном квадратичном случае. Многогранники Клейна для форм $g_1-g_4$ были недавно вычислены Брюно и Парусниковым. Они же для кратных корневых векторов вычислили “подходящие дроби”, полученные по разным матричным обобщениям алгоритма цепных дробей, и изучили их расположение относительно многогранников Клейна. В настоящей статье вычислены многогранники Клейна форм $g_5-g_7$ и сопряженной формы $g^*_7$. Найдены их периоды и фундаментальные области. Вычислены разложения кратных корневых векторов этих форм по матричным алгоритмам Эйлера, Якоби, Пуанкаре, Бруна, Парусникова, Брюно. По расположению “подходящих дробей” относительно многогранников Клейна оценивалось качество алгоритма. С этой точки зрения алгоритмы Эйлера и Пуанкаре оказались наихудшими, а алгоритм Брюно наилучшим. Но ни один из этих алгоритмов не обобщает все свойства цепной дроби.
Библиография: 21 название.

УДК: 511.36+514.172.45

Поступило: 15.01.2002
Исправленный вариант: 26.11.2004

DOI: 10.4213/mzm2518


 Англоязычная версия: Mathematical Notes, 2005, 77:4, 523–538

Реферативные базы данных:


© МИАН, 2024