RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2005, том 78, выпуск 4, страницы 579–594 (Mi mzm2615)

Эта публикация цитируется в 14 статьях

Производные категории трехмерных многообразий Фано $V_{12}$

А. Г. Кузнецов

Математический институт им. В. А. Стеклова РАН

Аннотация: В настоящей работе приводится описание производной категории когерентных пучков на трехмерном многообразии Фано индекса 1 и степени 12 (многообразии $V_{12}$). Легко показать, что если $X$ – многообразие $V_{12}$, то его производная категория содержит исключительную пару векторных расслоений $(\mathscr U,\mathscr O_X)$, где $\mathscr O_X$ – тривиальное расслоение, а $\mathscr U$ – мукаевское расслоение ранга 5 (индуцирующее вложение $X\to\operatorname{Gr}(5,10)$). Ортогональную подкатегорию $\mathscr A_X={}^\perp\left<\mathscr U,\mathscr O\right>\subset\mathscr D^b(X)$ можно рассматривать как нетривиальную часть производной категории многообразия $X$. Основным результатом настоящей работы является конструкция эквивалентности категорий $\mathscr A_X\cong\mathscr D^b(C^\vee)$, где $C^\vee$ – кривая рода 7, которая может быть канонически сопоставлена многообразию $X$ согласно результатам Илиева и Маркушевича. Для построения эквивалентности используются геометрические результаты Илиева и Маркушевича, а также результаты Бондала и Орлова о производных категориях. В качестве приложения доказывается, что поверхность Фано многообразия $X$ (поверхность, параметризующая коники на $X$) изоморфна $S^2C^\vee$ – симметрическому квадрату соответствующей кривой рода 7.
Библиография: 10 названий.

УДК: 514.762

Поступило: 22.11.2004

DOI: 10.4213/mzm2615


 Англоязычная версия: Mathematical Notes, 2005, 78:4, 537–550

Реферативные базы данных:


© МИАН, 2024