Аннотация:
Пусть $S(n)=\xi(1)+\dots+\xi(n)$ – сумма независимых случайных векторов $\xi(i)=\xi_{(n)}(i)$ с общим распределением, зависящим от параметра $n$. В работе найдены достаточные условия для справедливости равномерного варианта интегро-локальной теоремы Стоуна об асимптотике вероятности $\mathsf P(S(n)\in\Delta[x))$, где $\Delta[x)$ – куб со стороной $\Delta$ и с вершиной в точке $x$.
Библиография: 11 наименований.