Аннотация:
Пусть $K\subset\mathbb R^d$ – компактное выпуклое множество, являющееся пересечением полупространств, каждое из которых определено некоторым условием на не более, чем две координаты. Обозначим $Q$ наименьший параллелепипед, который содержит $K$ и имеет стороны, параллельные осям координат. В работе доказано, что при возрастании размерности $d$ отношение $\operatorname{diam}Q/\operatorname{diam}K$ может оказаться сколь угодно большим. Приведены также примеры компактных множеств в банаховых пространствах, не содержащихся ни в каком компактно сжимаемом множестве.
Библиография: 10 названий.