Аннотация:
Рассматривается задача построения асимптотических решений спектральной задачи для уравнения Шрёдингера на геометрическом графе. Дифференциальные уравнения на множествах такого типа возникают при анализе процессов в системах, допускающих представление в виде набора одномерных континуумов, взаимодействующих только через концы, например, при описании колебаний решетки из струн или стержней, стационарных состояний электронов в молекуле, акустических систем. Интерес к уравнениям Шрёдингера на сетях возрос, в частности, в связи с тем, что объекты нанотехнологий могут описываться тонкими многообразиями, которые в пределе могут стягиваться к графам (см. [1]). Основным результатом данной работы является алгоритм построения правил квантования (обобщающих известные правила квантования Бора–Зоммерфельда), который проиллюстрирован рядом примеров. Также рассматривается задача описания ядер оператора Лапласа, действующего на $k$-формах, определенных на сети. Кроме того, найдены асимптотические собственные значения, соответствующие собственным функциям, локализованным в вершине графа.
Библиография: 13 названий.