Аннотация:
Доказано, что среди всех римановых пространств постоянной кривизны только трехмерные пространства имеют кручение, инвариантное относительно группы движений. Тензор кручения в этих пространствах ковариантно постоянен и определяет форму кручения. Отношение интеграла от этой формы по ограниченной области к ее объему есть величина постоянная, определяющая кручение пространства. Вводятся понятия объемного кручения и скалярного кручения.
Библиография: 3 названия.