RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 1982, том 31, выпуск 3, страницы 389–402 (Mi mzm6114)

Эта публикация цитируется в 16 статьях

Оценки производной интеграла типа Коши с мероморфной плотностью и их приложения

А. А. Пекарский


Аннотация: Пусть $\Gamma$ – простая замкнутая спрямляемая кривая, а $\Gamma^+$ и $\Gamma^-$ – ограниченная и неограниченная области соответственно с границей $\Gamma$. В работе получены оценки производной интеграла типа Коши $(K^-_\Gamma f)(z)=(2\pi i)^{-1}\int_\Gamma f(\xi)(\xi-z)^{-1}\,d\xi$, $z\in\Gamma\cup\Gamma^-$ при условии, что его плотность $f(\xi)=g(\xi)+r(\xi)$ и $\|f\|_{L_p(\Gamma)}\leqslant1$, $p=1$ или $\infty$, где $r(\xi)$ – рациональная функция, полюсами которой могут быть (с учетом кратности) лишь некоторые фиксированные числа из $\Gamma^+$, a $g(\xi)$ есть граничное значение функции $g(z)$ класса Смирнова $E_p(\Gamma^+)$. С помощью этих оценок находятся нормы проекторов, порожденных рациональными функциями, и доказываются две обратные теоремы рациональной аппроксимации. Библ. 19 назв.

УДК: 517.5

Поступило: 09.01.1979


 Англоязычная версия: Mathematical Notes, 1982, 31:3, 199–206

Реферативные базы данных:


© МИАН, 2025