RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 1981, том 30, выпуск 1, страницы 73–81 (Mi mzm6231)

О некоторых граничных свойствах последовательностей векторнозначных аналитических функций

А. А. Данилевич


Аннотация: Исследуются граничные свойства последовательностей аналитических функций со значениями в рефлексивном пространстве Фреше. На случай таких функций переносится теорема Тумаркина о сходимости последовательности аналитических функций $\{f_n(z)\}$ внутри единичного круга $D$, если угловые предельные значения $f_n(e^{i\theta})$ сходятся по мере на некотором подмножестве $M$ положительной лебеговой меры на окружности $\partial D$. Библ. 4 назв.

УДК: 513.88.517.5

Поступило: 01.06.1978


 Англоязычная версия: Mathematical Notes, 1981, 30:1, 523–528

Реферативные базы данных:


© МИАН, 2024