RUS  ENG
Полная версия
ЖУРНАЛЫ // Математические заметки // Архив

Матем. заметки, 2010, том 88, выпуск 1, страницы 43–52 (Mi mzm6604)

Алгебры Ли и алгебры ассоциативного типа

Н. А. Корешков

Казанский государственный университет

Аннотация: В работе исследуются некоторые свойства алгебр ассоциативного типа, которые применяются затем для описания структуры конечномерных полупростых модулярных алгебр Ли. Устанавливается, что однородный радикал конечномерной алгебры ассоциативного типа совпадает с ядром некоторой формы, индуцированной функцией следа со значениями в кольце многочленов. Используя этот факт, показано, что конечномерная полупростая алгебра ассоциативного типа $A=\bigoplus_{\alpha\in G}A_\alpha$ над полем нулевой характеристики, градуированная группой $G$, имеет ненулевую компоненту $A_1$ (1 – единица группы $G$), причем $A_1$ – полупростая ассоциативная алгебра.
Пусть $B=\bigoplus_{\alpha\in G}B_\alpha$ – конечномерная полупростая алгебра Ли над простым полем $F_p$, градуированная коммутативной группой $G$. Если $B=F_p\otimes_{\mathbb Z}A_L$, где $A_L$ – коммутаторная алгебра $\mathbb Z$-алгебры $A=\bigoplus_{\alpha\in G}A_\alpha$, причем $\mathbb Q\otimes_{\mathbb Z}A$ – алгебра ассоциативного типа, то 1-компонента алгебры $K\otimes_{\mathbb Z}B$, где $K$ – алгебраическое замыкание поля $F_p$, является суммой некоторого числа алгебр $\operatorname{gl}(n_i,K)$.
Библиография: 4 названия.

УДК: 512.554

Поступило: 13.06.2007
Исправленный вариант: 08.05.2009

DOI: 10.4213/mzm6604


 Англоязычная версия: Mathematical Notes, 2010, 88:1, 39–47

Реферативные базы данных:


© МИАН, 2024