Аннотация:
Для многочленов $\{p_n(t)\}_0^\infty$ ортонормированных на $[-1,1]$ с весом $p(t)=(1-t)^\alpha(1+t)^\beta\Pi_{\nu=1}^m|t-x_\nu|^{\delta_\nu}H(t)$, получены необходимые и достаточные условия ограниченности последовательностей норм: 1) $\|(1-t)^\mu p_n\|_{L^r(y_m,1)}$, 2) $\|(1+t)^\mu p_n\|_{L^r(-1,y_0)}$ и 3) $\||t-x_\nu|^\mu p_n\|_{L^r(y_{\nu-1},y_\nu}$ при условии, что $1\le r<\infty$, $\alpha$, $\beta$, $\delta_\nu>-1$ ($\nu=\overline{1,m}$), $-1<y_0<x_1<\dots<y_m<x_m<1$, $H(t)>0$ на $[-1,1]$ и $\omega(H,\delta)\delta^{-1}\in L^2(0,2)$, где $\omega(H,\delta)$ — модуль непрерывности в $C(-1,1)$ функции $H$. Библ. 8 назв.