Аннотация:
Гипотеза Эггерта утверждает, что конечная коммутативная алгебра $R$ над полем простой характеристики $p$ обладает свойством $\dim R\ge p\dim R^{(1)}$, где $R^{(1)}$ –
подпространство $R$, порожденное всеми $p$-ми степенями элементов из $R$. Получены результаты, связанные с этой гипотезой, и результаты о нильпотентных алгебрах, имеющих относительно большой класс нильпотентности.
Библиография: 8 названий.