Аннотация:
Доказана формула
$$
\ln(e^Be^A)=\int_0^t\psi(e^{-\tau ad_A}e^{-\tau ad_B})e^{-\tau ad_A}\,d\tau(A+B),
$$
где $\psi(x)=(\ln x)/(x-1)$; здесь $A$, $B$ — удовлетворяющие некоторым условиям элементы конечномерной алгебры Ли. Эта формула позволяет, в частности, дать простое доказательство теоремы Кэмпбелла–Хаусдорфа. Приводится также обобщение формулы на случай произвольного числа сомножителей. Библ. 4 назв.