Аннотация:
Доказано, что любая структура расслоения на многообразия кодаировой размерности нуль на общем полном пересечении Фано индекса 1 размерности $M$ в $\mathbb{P}^{M+k}$ при $M\geqslant 2k+1$ есть пучок гиперплоских сечений. Описаны $K$-тривиальные структуры на многообразиях с пучком полных пересечений Фано.
Библиография: 9 названий.