Аннотация:
На примере пары связанных волноводов строится периодический дифференциальный оператор второго порядка в евклидовой области, у которого имеются лакуны в зонном спектре, причем соответствующие зонные функции достигают краев лакун строго внутри зоны Бриллюэна. Пара волноводов моделируется Лапласианом в двух бесконечных полосах различной ширины, имеющих общую внутреннюю границу. На общей границе ставится краевое условие Неймана и вырезается периодическая система малых отверстий, на оставшейся внешней части границы – краевое условие Дирихле. Показано, что путем изменения ширины полос и расстояний между отверстиями можно произвольным образом менять как положение упомянутых экстремумов, так и количество лакун. Вычислены первые члены асимптотик длин лакун и точек экстремума.
Библиография: 26 названий.