Аннотация:
В статье рассматриваются числа Тачибаны $t_r(M)$, Киллинга $k_r(M)$ и планарности $p_r(M)$ как размерности векторных пространств соответственно конформно киллинговых, козамкнутых и замкнутых конформно киллинговых $r$-форм, $1\le r\le n-1$, заданных “в целом” на $n$-мерном, $n\ge 2$, компактном римановом многообразии $(M,g)$, в их связи с числами Бетти $b_r(M)$. В частности, доказано, что если число Бетти $b_r(M)=0$, то соответствующее число Тачибаны имеет вид $t_r(M)=k_r(M)+p_r(M)$ для $t_r(M)>k_r(M)>0$. В частном случае, когда $b_1(M)=0$ и $t_1(M)>k_1(M)>0$, многообразие $(M,g)$ конформно диффеоморфно евклидовой сфере.
Библиография: 31 название.