Аннотация:
The titanium oxide (Ti$_3$O$_5$) microcrystals were synthesized by using solid-phase sintering from a mixture of titanium Ti and titanium dioxide TiO2 powders. Subsequently, Ti$_3$O$_5$ nanocrystals were produced by using high-energy ball milling for 15–480 minutes. A full-profile analysis of the X-ray diffraction spectra of milled Ti$_3$O$_5$ powders showed that high-energy milling does not lead to disordering or changing of the structure and stoichiometry, the structure remains monoclinic (sp. gr. $C2/m$), and XRD reflections are broadened due to the small particle size and microdeformations. Experimental data show that increasing of the milling time leads to decreasing of the coherent scattering regions up to 26 nm, increasing of the powder volume fraction of the nanophase up to 81%, and increasing of microdeformations value. The morphology and the surface area of milled nanopowders were examined by SEM, HRTEM and BET techniques.
Ключевые слова:high-energy ball milling, Ti$_3$O$_5$, XRD, BET, SEM, HRTEM.
Поступила в редакцию: 05.10.2022 Принята в печать: 24.10.2022