RUS  ENG
Полная версия
ЖУРНАЛЫ // Наносистемы: физика, химия, математика // Архив

Наносистемы: физика, химия, математика, 2016, том 7, выпуск 2, страницы 303–314 (Mi nano203)

Эта публикация цитируется в 2 статьях

INVITED SPEAKERS

Time dependent delta-prime interactions in dimension one

C. Cacciapuotia, A. Mantileb, A. Posilicanoa

a DiSAT, Sezione di Matematica, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy
b Laboratoire de Mathématiques, Université de Reims-FR3399 CNRS, Moulin de la Housse BP 1039, 51687 Reims, France

Аннотация: We solve the Cauchy problem for the Schrödinger equation corresponding to the family of Hamiltonians $H_{\gamma(t)}$ in $L^2(\mathbb{R})$ which describes a $\delta'$-interaction with time-dependent strength $1/{\gamma(t)}$. We prove that the strong solution of such a Cauchy problem exists whenever the map $t\mapsto\gamma(t)$ belongs to the fractional Sobolev space $H^{3/4}(\mathbb{R})$, thus weakening the hypotheses which would be required by the known general abstract results. The solution is expressed in terms of the free evolution and the solution of a Volterra integral equation.

Ключевые слова: time dependent point interactions, delta-prime interaction, non-autonomous Hamiltonians.

PACS: 02.30.Jr, 03.65.Db, 02.30.Rz

Поступила в редакцию: 10.02.2016

Язык публикации: английский

DOI: 10.17586/2220-8054-2016-7-2-303-314



Реферативные базы данных:


© МИАН, 2024